

LIFE17 ENV/IT/000347 – LIFE SUBSED

Sustainable substrates for agriculture from dredged remediated marine sediments From ports to pots

18th Months Monitoring Meeting

ACTION B2 – Demonstration of the use of remediated sediments as a substrate for nursery production

B2.2 - Nursery production of olive and citrus

Grafted plantlets cv FRANTOIO

Foreseen:

5 plants x 5 substrates x 3 irrigation systems x 3 replicates

Total = 225 plants

New experimental design:

5 plants5 substrates2 irrigation systems

Total = 150 plants

3 replicates

Substrates:

MIX 1 - 100% treated sediment

(TS)

MIX 2 - 75% TS

MIX 3 - 75% TS

MIX 4 - 50% TS

MIX 5 - 25% TS

Expected results: 150 olive grafted plantlets growing

ACTION B4 – Demonstration of the use of remediated sediments as a substrate for food crops production

B4.1 – **Basil**

2 commercial cultivar Total 14400 seeds

Experimental design:

20 seeds (~ 50 g of seeds) in a 20 cm Ø plastic container total 7200 seed/cv = 360 containers

MIX1

20 containers x 3 substrates x 3 replicates x 2 irrigation systems

MIX2

MIX3

(1)

ACTION B4 – Demonstration of the use of remediated sediments as a substrate for food crops production

B4.2 - Blueberry

Foreseen:

2 cultivar x 4 plants x 3 substrates x 2 irrigation systems x 3 replicates

Total = 216 plants

New experimental design:

2 cultivar
3 plants
3 substrates
4 irrigation systems
3 replicates

MIX1

MIX2

MIX3

Total = 108 plants

ACTION B4 – Demonstration of the use of remediated sediments as a substrate for food crops production

B4.2 - Woodland strawberry

Foreseen:

1 cultivar x 5 plants x 3 substrates x 3 irrigation systems x 3 replicates

Total = 135 plants

New experimental design:

1 cultivar
5 plants
3 substrates
2 irrigation systems
3 replicates

MIX1

MIX2

MIX3

Total = 90 plants

ACTION C3 - Monitoring and validation of the use of remediated sediments as a substrate for food crops production

C3.1 - Olive

NURSERY PRODUCTION

Procedures for Olive (grafted plantlets)

1. Plants and leaves

Data collection (<u>non destructive</u> analysis) on 20 grafted plantlets/treatment (or as differently indicated)

Recurrence: every 20 days from planting time (included) or as differently indicate in each parameter

Cultural practices: irrigation, pest control and fertilization to be performed as typically done in the area of production

- 1.1. Mortality (number; percentage)
- 1.2. Stem diameter
- 1.3. Stem height (tallest part in absolute)
- 1.4 Leaf surface (on 20 leaves from each cy-substrate plot) (early September)
- 1.5. Leaf blade colour (L, a, b coordinates) (on 20 leaves from cv-substrate plot) (early September)
- 1.6. Chlorophyll content (on 20 leaves from each plot) early September)
- 1.7. Nutritional foliar analysis (on one sample per cv-substrate) once soon after fruit harvesting
- N, P, K, Ca, Mg, Na, B, Mn, Fe, Zn, Cu, Mo
- 1.8. Appearance of leaves

Pictures for each cy-substrate every 20 days

Data collection (destructive analysis) - Recurrence: only at the end of the trial

- 1.9. Fresh weight of the whole plant
- 1.10. Dry weight of the whole plant
- 1.11. Fresh weight of stem (aerial part)
- 1.12. Dry weight of stem 1.13. Fresh weight of root system
- 1.14. Dry weight of root system

Analysis of contaminants (end of trial)

- 1.15 Heavy metals on roots
- 1.16. Heavy metals on stems
- 1.17. Heavy metals on leaves
- 1.18. Other contaminants (to be defined in relation to analytical results of sediments)

C3.2 - Basil - Blueberry - Woodland strawberry

Procedures for Woodland Strawberry

(plant and fruit evaluation

1. Plants and leaves

Data collection (non destructive analysis) on all the plants (or as differently indicated) Recurrence: every 30 days from planting time (included) or more

Cultural practices: irrigation, pest control and fertilization to be performed as typically done in the area of production (Murcia and Tuscany); stolons to be removed as soon as they appear

- 1.1. Plant mortality (number; percentage)
- 1.2. Crown diameter
- 1.3. Plant height (tallest part in absolute)
- 1.4. Number of fully expanded leaves
- 1.5. Leaf surface (on 10 leaves from each plot; 30 leaves per cv-substrate) soon after fruit harvesting

1.6. Leaf blade colour (L, a, b coordinates) and chroma index (a² + b²)^{1/2}(on 10 leaves from each plot; 30 leaves per cvsubstrate) soon after fruit harvesting

- 1.7. Chlorophyll content (on 10 leaves from each plot: 30 leaves per cy-substrate) soon after fruit harvesting
- 1.8. Nutritional foliar analysis (on one sample per cy-substrate) once soon after fruit harvesting. (N. P. K. Ca. Mg).

Pictures for each cy-substrate at every monitoring

Data collection (destructive analysis) - Recurrence: only at the end of the trial

- 1.10. Fresh weight of the whole plant
- 1.11. Dry weight of the whole plant

At the end of the experiment (presumably after about 4 weeks, growth stage 2-3 couples of true

3.6 fresh weight - all the remaining (not used for leaf area determination) plants (to be expressed

4-5 days - 1 week from sowing:

leaves) - only shoots:

3.1 plant survival - all the plants

1, seed germination - all the seeds (number and percentage)

2.1 plant survival - all the plants (number and percentage)

3.2 number of leaves – on a sample of 10-20 plants per tray

3.3 plant height - on a sample of 10-20 plants per tray 3.4 leaf area - on a sample of 10-20 plants per tray

3.7 dry weight - all the weighed fresh matter

3.9 nitrate content (Cataldo method)

3.10 Total polyphenols 3.11 Antioxidant activity 3.12 Vitamin C

3.13 Organic acids

3.14 Sugars 3.15 Essential oil content

Chemical composition and organoleptic quality: 3.8 mineral element concentration

3.16 Analysis of organic and inorganic contaminants

2.2 growth stage (number of leaves) - on a sample of 30-50 plants per tray

3.5 chlorophyll content (SPAD values) - on a sample of 10-20 plant per travs

1.12. Fresh weight of stem (aerial part) Procedures for BASIL (Plant evaluation)

(plant and fruit evaluation

Cultivars: Duke and Bluecrop

1. Plants and leaves

Data collection (non destructive analysis) on all the plants (or as differently indicated Recurrence: every 30 days from planting time (included) or more

Cultural practices: irrigation, pest control and fertilization to be performed as typically done in the area of production

Procedures for BILLEBERRY

- 1.1. Plant mortality (number: percentage
- 1.2. Plant width(widest part in absolute
- 1.4. Number of shoots (longer than 15 cm)
- 1.5. Leaf surface (on 10 leaves from each plot; 30 leaves per cv-substrate) soon after fruit harvesting
- 1.6. Leaf blade colour (L, a, b coordinates) and chroma index $(a^2+b^2)^{1/2}$ (on 10 leaves from each plot; 30 leaves per continuous). substrate) soon after fruit harvesting
- 1.7. Chlorophyll content (SPAD) (on 10 leaves from each plot; 30 leaves per cv-substrate) soon after fruit harvesting
- 1.8. Nutrient content (N, P, K, Ca and Mg) in the blueberry leaves (on one sample per cv-substrate) once soon after

Pictures for each cy-substrate at every monitoring

Data collection (destructive analysis) - Recurrence: only at the end of the trial

- 1.9. Fresh weight of the whole plant 1.10.Dry weight of the whole plant
- 1.11.Fresh weight of stem (aerial part)
- 1.13.Length of root system
- 1.15.Dry weight of root system

- 2.1. Re-growth time (second year)
- 2.2. Flowering time (first flower first two completely open flowers in one plant; peak of flowering 50 % of completely onen flowers: last flower)

ACTION C4 – Monitoring of socio-economic impact of the project and LCA

Collection of information from previous actions

LCA Inventory - First phase

TRANSPORT

(Technical characteristics of vehicle for transport; diesel consumption; volume of soil transported; number of travels)

LANDFARMING

Plastic film (origin, material, dimensions, reuse/end life); technical characteristics of machines, hours of work, consumpiont; resources used (es water for irrigation)

LCA Inventory - Second phase

TRIALS SET AND CULTIVATION

For each species and each treatment all the information are needed

Plants origin; container (dimension, material, etc.); substrates (origin, composition, etc.); machines; irrigation and fertilization; treatments against pest and diseases.

