

Workshop online, 8 luglio 2021 LIFE SUBSED: Sustainable substrates for agriculture from dredged remediated marine sediments: from ports to pot

Advances in the Sustainable Reuse of Sediments in Crop Production: Agronomic, Environmental, and Legal Issues

> Guest Editor Dr. Stefania Nin

Deadline 31 December 2021

Special Invitation to submit

VALUTAZIONE DI PARAMETRI MORFOLOGICI E BIOCHIMICI IN COLTIVAZIONI DI SPECIE ORNAMENTALI E ORTICOLE SU SUBSTRATI A DIVERSA PERCENTUALE DI SEDIMENTO FITORIMEDIATO

Stefania Nin

CREA, Centro di ricerca Orticoltura e Florovivaismo, Pescia (PT), Italia

Gruppo di lavoro CREA: Gianluca Burchi Maurizio Antonetti Domenico Prisa Francesca Tozzi Adelaide Turchi

MODEL PLANT SPECIES FOR VALIDATION OF SEDIMENT-BASED SUBSTRATES

Evergreen ornamental

Typical and widely used evergreen ornamental and barrier plant (hedge), with a very fast growing and plant development.

Nowadays, *P. laurocerasus* is recognised as one of the most commercially important ornamental plant species for the Italian nursery sector.

Prunus laurocerasus (laurel) cv Novita

Woody perennial. Grows well in the Mediterranean climates and adapts to all types of soil, tolerating light, medium and heavy clay soil. Easy to care, finds the optimum in moderately fertile, neutral or alkaline, fresh and drained ones.

Flower potted plant

National Flower of South Africa, is commercially relevant for the flower industry, and it was imported in Italy by Flora Toscana in the 2000 to be used as ornamental plant and currently, in Italy, only Flora Toscana is cultivating and exporting this plant species all over the world.

Protea cynaroides (King Protea), cv 'Little Prince'

Perennial flowering plants, native from Southern Africa. Is adapted to nutrient-poor soils, with a pH 4-6, and a clay content of less than 20% with low levels of P, K and Na. Water requirements are high when grown under soilless conditions. Hot, humid conditions are not well tolerated by protea and sufficient air movement is required for healthy growth.

Cut flower

Calla is grown as outdoor garden and potted plants, but also largely raised for cut flower production. Thanks to its magnificent beauty, calla is a flowering plant of major economic importance worldwide.

Zantedeschia aethiopica (Calla lily)

Perennial rhizomatous species, native to Africa. In Italy, the cultivation is performed indoor, under greenhouse, in order to preserve the vegetative part of the plants in winter. It prefers well-drained soil with pH 6-6.5 and constant irrigation. Is susceptible to salt stress but has been widely used for the treatment of wastewater or contaminated wetland as it is considered moderately tolerant to heavy metals.

Aromatic leaf species

Basil is undoubtedly the most loved and popular herb in Italy. Has a very short spring-summer cycle and is cultivated by seed. It is prone to downy mildew, a relatively recent disease in Italy that under favorable conditions develops very quickly and is difficult to control.

Ocimum basilicum (basil) cvs 'Genova' and 'Valentino' Annual herb, suitable for the Mediterranean climate. It grows well in all types of soils, but does its best in well-drained, moist nutrient rich soil with a neutral pH.

ALL EXPERIMENTS WERE PERFORMED UNDER GREENHOUSE CONDITIONS

LIFE 17 ENV/IT/000347

SUBSTRATE MIXTURES: totally 15 PBS - Peat-Based Substrate CFBS - Coconut Fiber-Based Substrate WFBS - Wood Fiber-Based Substrate TS - Treated Sediment (0-25-50-100%)

WATER REGIMES: WR1: normal WR2: low (reduced 30%) WR3: very low (reduced by 50%)

USED Mixtures and matrixes (v/v)

Substrate	Peat	Pumice	Coir fiber	Coir dust	Wood fiber	Perlite
PBS_1	60	40				
PBS_2	79	12.4				8.5
CFBS_1		40	60			
CFBS_2		24	45.6	30.4		
CFBS_3		24	53.2	22.8		
WFBS		40			60	

Mixtures	PBS_1	CFBS_1	WFBS	PBS_2	CFBS_2	CFBS_3	TS
1	100						0
2	75						25
3	50						50
4		75					25
5		50					50
6			75				25
7			50				50
8				100			0
9				75			25
10				50			25
11					75		25
12					50		25
13						75	25
14						50	50
15	0						100

Legend:

PBS = Peat-based substrate (control); CFBS = Coconut fiber-based substrate; WFBS = Wood fibre-based substrate; TS = Treated sediment

LIFE 17 ENV/IT/000347

DATA COLLECTION

Non-destructive analysis

- Plant mortality (number; percentage)
- Base stem diameter
- Maximum plant height
- Number of vegetative sprouts
- Length of primary vegetative shoot
- Number of fully expanded leaves on primary vegetative shoot
- Leaf blade colour (L. a. b coordinates) and Chroma index $(a^2 + b^2)^{1/2}$
- Photosynthetic activity by CIRAS-2

Destructive analysis

- Leaf area
- Chlorophyll content
- Fresh and dry weight of the whole plant
- Fresh and dry weight of stem (aerial part)
- Fresh and dry weight of root system
- Malondialdehyde (MDA) analysis for oxidative stress
- Heavy metal analysis

LIFE 17 ENV/IT/000347

DATA COLLECTION FOR BASIL

Plants and leaves

Germination test

- Seed germination (number; percentage)
- Mean germination time (number; percentage)
- Time taken to 50% germination
- Plant mortality

Data collection at growth stage of 2-4 couple of true leaves (end of demonstration)

- Number of leaves
- Leaf area
- Chlorophyll content
- Fresh weight of the whole seedling

Chemical parameters

- Total polyphenols content
- Antioxidant activity (FRAP, ABTS and DPPH)
- Organic acids and sugars
- Analysis of organic and inorganic contaminants

CHARACTERISTICS OF GROWING MEDIA

Physicochemical characteristics	TS0	TS50	TS100	L.D. 75/2010	L.D. 152/2006	
Dry bulk density (g cm ⁻³)	0.31	0.58	0.67	≤ 0.95	n.a	Physics I is a
Porosity (%)	90.1	75.1	74.3	n.a	n.a	Physico-chemical properties in compliance with a second secon
Air capacity (%)	25.6	19.5	6.0	n.a	n.a	
Water capacity (%)	64.5	55.62	73.7	n.a	n.a	a soluting tertilizers
Easy available water (%)	21.4	11.2	21.5	n.a	n.a	Contamia
EC (dS m ⁻¹)	0.40	0.28	0.20	≤ 1.0	n.a	Decree 152/2000
рН	6.4	7.3	7.8	4.5-8.5	n.a	 Contamination limits set by Legislative Decree 152/2006 regarding soil
N-NH ₃ (mg Kg ⁻¹)	277.0	29.2	2.2	n.a	n.a	
N-NO ₃ (mg Kg ⁻¹)	271.7	118.8	59.4	n.a	n.a	
Humidity (%)	14.9	4.8	2.1	n.a	n.a	
Total nitrogen (%)	1.3	0.3	0.1	n.a	n.a	
Total organic carbon (%)	27.7	8.7	0.7	≥ 4	n.a	
Phosphorus (g Kg ⁻¹)	518.0	715.0	662.0	n.a	n.a	
Metals				n.a	n.a	B A BA
Cu (mg Kg ⁻¹)	12.1	35.5	37.1	≤ 230	≤ 120	A A A A A A A A A A A A A A A A A A A
Zn (mg Kg ⁻¹)	18.1	167.4	188.5	≤500	≤150	
Ni (mg Kg ⁻¹)	6.5	50.0	50.3	≤ 100	≤ 120	Substrates:
Cr (mg Kg ⁻¹)	5.2	64.1	59.4	n.a	≤ 150	TSO (BMix 1): 100% PBS (control) TS50 (BMix 2): 50% PBS, 50% TS (v/v)
Cr (VI) (mg Kg ⁻¹)	-	-	-	≤ 0.5	≤ 2	TS100 (BMix 3) : 100% TS
Pb (mg Kg ⁻¹)	20.6	35.9	49.5	≤ 140	≤ 100	Workshop online

LIFE 17 ENV/IT/000347

Substrates:

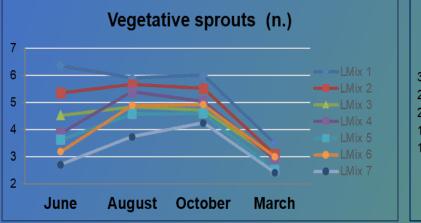
 LMix 1: 100% PBS (control)
 LMix 2: 75% PBS, 25% TS (v/v)

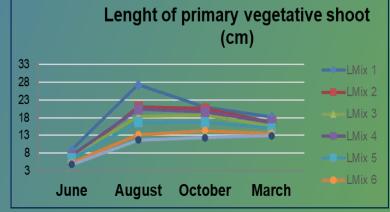
 LMix 3: 50% PBS, 50% TS (v/v)
 LMix 4: 75% CFBS, 25% TS (v/v)

 LMix 5: 50% CFBS, 50% TS (v/v)
 LMix 6: 75% WFBS, 25% TS (v/v)

 LMix 7: 50% WFBS, 50% TS (v/v)
 LMix 6: 75% WFBS, 25% TS (v/v)

(UNI EN ISO 3696)




RESULTS: LAUREI

Factor/Parameter	MPH	NVS	LVS	NEL	
Substrate		1173	LVJ		
LMix 1	38.5 a	6.2 a	20.8 a	14.2 a	
LMix 2	36.1 ab	5.3 b	17.2 b	13.7 ab	
LMix 3	33.5 b	4.6 c	15.7 bc	12.7 ab	
LMix 4	36.3 ab	4.7 bc	16.9 b	13.4 ab	
LMix 5	31.1 c	4.3 c	14.4 c	12.0 bc	
LMix 6	26.8 d	4.6 c	11.5 d	10.8 c	
LMix 7	25,6 d	3.6 d	10.9 d	10.4 c	

LIFE 17 ENV/IT/000347

Legend: BSD = Base stem diameter; MPH = Maximum plant height; NVS = Number of vegetative sprouts; LVS = Length of vegetative sprouts; NEL = Number of fully expanded leaves on vegetative sprouts

CIELab coordinates

LAUREL LEAF BLADE COLOUR AND CHROMA INDEX

	Augus	t 2020		
Substrate	L brightness	a redness	b yellowness	Chroma index
LMix 1	34.1 a	-6,6 e	11,8 a	13,6 a
LMix 2	34.9 a	-7.1 d	13,1 a	14,8 a
LMix 3	36.1 b	-7.6 c	15,0 b	16,8 b
LMix 4	35,9 b	-7.9 b	15,2 b	17,1 b
LMix 5	36.6 b	-8.0 b	16,2 b	18,1 b
LMix 6	45,3 d	-10.1 a	30,1 d	31,7 d
LMix 7	45.4 c	-9.9 a	27,0 c	28,8 c

Water regime	L brightness	a redness	b yellowness	Chroma Index
WR1	38,3 ns	-8,2 ns	18,7 ns	20,6 ns
WR2	37.8 ns	-8,1 ns	17,9 ns	19,8 ns

Ostakan	
October	
2020	
	_
and the state of the second second	

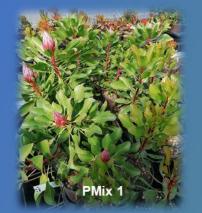
Substrate	Chroma index
LMix 1	14.1 ab
LMix 2	13.4 a
LMix 3	14.1 ab
LMix 4	14.7 bc
LMix 5	14.3 bc
LMix 6	16.5 d
LMix 7	14.9 c

LAUREL DESTRUCTIVE ANALYSIS

MDA: 0.3 - 0.4 mM/g DWChl_a: $1.6 - 2.2 \mu \text{g/mg FW}$ Chl_b: $0.8 - 1.0 \mu \text{g/mg FW}$ Chl_{Tot}: $2.4 - 3.1 \mu \text{g/mg FW}$ Carotenoids: $0.3 - 0.6 \mu \text{g/mg FW}$

Range of lipid peroxidation by measuring malondialdehyde (MDA) concentration and of chlorophylls (a = Chl_a , b = Chl_b , Total = Chl_{Tot}) and carotenoids content by spectrophotometer

Factor	Stem DW (g)	Leaf DW (g)	Root DW (g)	Total DW (g)	Total leaf area (cm ²)
Substrate					
LMix 1	42.6 a	116.7 ab	134.8 bc	294.1 bc	9.764.2 a
LMix 2	42.8 a	126.0 a	197.7 a	366.4 a	8.632.6 ab
LMix 3	31.6 b	89.3 c	126.7 bcd	247.6 cd	7.282.6 bc
LMix 4	42.3 a	119.4 a	155.5 ab	317.2 ab	8.442.8 ab
LMix 5	31.6 b	93.0 bc	93.3 cd	218.0 de	6.621.3 c
LMix 6	18.4 c	55.4 d	91.7 cd	165.5 e	4.885.4 d
LMix 7	18.2 c	56.6 d	82.5 d	157.3 e	4.357.3 d
Water regin	ne				
WR1	29.6 b	ns	ns	ns	6.677.6 b
WR2	<mark>35.3 a</mark>	ns	ns	ns	<mark>7.604.2 a</mark>



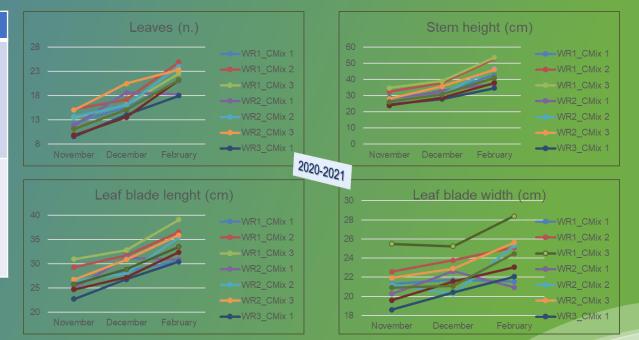
RESULTS: PROTEA

e l'analisi dell'economia agrari				2020	
Factor	Shoc	ot (n.)	Shoot lenght (cm)		
	August	October	August	October	
Substrate					
PMix 1	2,7 a	2,6 a	3,9 a	8,8 a	
PMix 2	1, 9 b	1, 8 bc	2,2 b	4,2 b	
PMix 3	1,2 c	1,5 c	1,6 bc	2,4 d	
PMix 4	1,6 bc	1, 8 bc	1,3 c	3,5 bc	
PMix 5	1,7 b	1,7 bc	1,7 bc	2,3 d	
PMix 6	1, 9 b	2,1 b	1,7 bc	3,3 bcd	
PMix 7	1,9 b	2,1 b	1,8 bc	2,9 cd	
Water regime					
WR1	2,0 a	2,1 a	2,2 ns	3,9 ns	
WR2	2,0 a	2,0 a	2,0 ns	4,1 ns	
WR3	1,5 b	1,7 b	1,9 ns	4,0 ns	

Workshop online, 8 July 2021

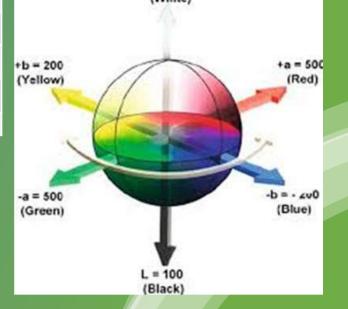
Protea mortality (%) October 2020

	WR1	WR2	WR3
Mix1	0	0	10
Mix2	0	0	17
Mix3	0	0	13
Mix4	0	0	13
Mix5	3	17	37
Mix6	7	0	53
Mix7	3	3	57



Factor/Parameter	NL	MSH	LA		
Substrate LMix 1 LMix 2 LMix 3	15.5 b 17.4 a 17.6 a	31.9 c 35.6 b 37.3 a	477.0 c 558.6 b 612.4 a		
Water regime WR 1 - high WR 2 - medium WR 3 - low	17.7 a 17.9 a 14.9 b	39.5 a 34.6 b 30.7 c	621.6 a 540.3 b 486.9 c		

Legend: NL = Number of leaves (stems); MSH = Maximum stem height; LL= Leaf length; LW = Leaf width; LA = Leaf area


CALLA LEAF BLADE COLOUR AND CHROMA INDEX

			February 2021			
Factor	L brightness	a redness	b yellowness	Chroma index	Mean separation within columns by Duncan's multiple	
Substrate					range test ($p < 0.01$)	
CMix 1	47,29 a	-10,25 a	30,15 a	32,01 a		
CMix 2	38,15 b	-6,87 b	21,18 b	22,30 b		
CMix 3	37,92 b	-8,33 b	20,09 b	21,81 b	L = 0 (White)	
Water regime					- A.	
WR1	41,03	-8,50	21,18	22,90	+b = 200 +a = 1 (Yellow) (Re	
WR2	40,86	-8,99	25,81	27,35	(Yellow) (Re	
WR3	41,57	-7,97	24,42	25,86		

CALLA: NUMBER OF FLOWERS and POST HARVEST

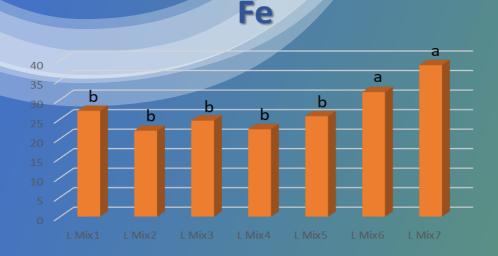
Substrate * WR	Flowers (n)	Flower commercial senescence (days)
CMix1_WR1	150	11.8 ab
CMix2_WR1	197	13.2 a
CMix3_WR1	182	13.4 a
CMix1_WR2	148	14.8 a
CMix2_WR2	176	13.8 a
CMix3_WR2	165	13.8 a
CMix1_WR3	129	8.2 bc
CMix2_WR3	113	7.6 c
CMix3_WR3	165	12.0 ab

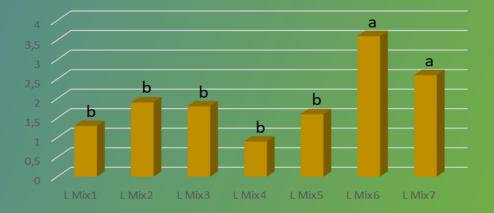
	October 2020				
Factor/Parameter	Germination %				
Cultivar					
Genova	60.2 ns				
Valentino	57.2 ns				
Substrate					
LMix 1	61.8 a				
LMix 2	65.6 a				
LMix 3	48.8 b				
Water regime					
WR 1 - high	60.4 ns				
WR 2 - medium	59.2 ns				
WR 3 - low	56.4 ns				

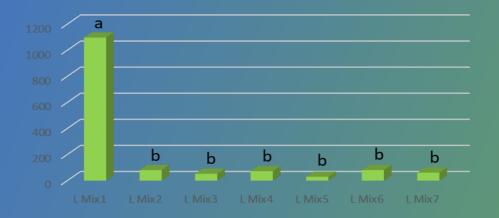
Substrate	Water regime	Total fresh weight (g)		Total leaf area (cm ²)	
Substrate		Genova	Valentino	Genova	Valentino
TS0	WR1	71	114	2041	3074
TS50	WR1	48	91	1448	2445
TS100	WR1	22	43	714	1082
TS0	WR2	77	109	2271	2850
TS50	WR2	57	89	1801	2402
TS100	WR2	20	36	700	1011
TS0	WR3	37	54	1369	1598
TS50	WR3	24	41	755	1268
TS100	WR3	13	21	487	611

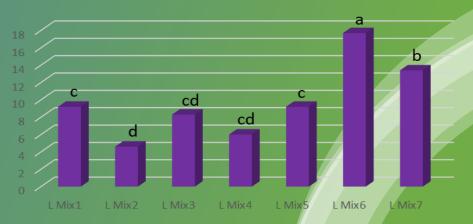
TS0 - WR2

TS50 - WR2

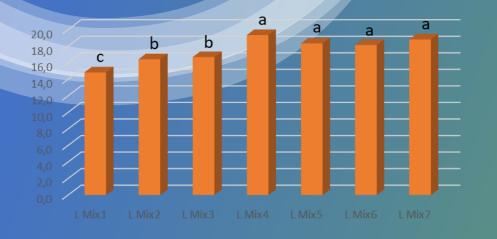

TS100 - WR2

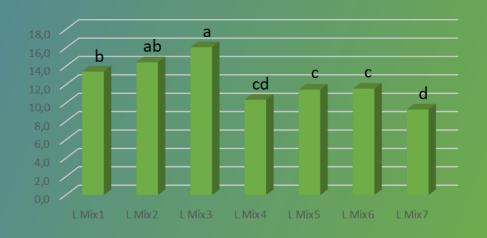

ESTIMATION OF HEAVY METALS IN LAUREL LEAVES (mg kg ⁻¹ dw)


LIFE 17 ENV/IT/000347

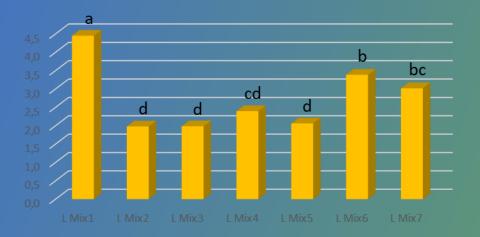

Cu

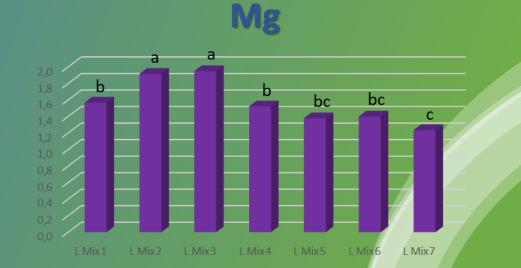
Mn





ESTIMATION OF NUTRIENTS IN LAUREL LEAVES (g kg ⁻¹ dw)


LIFE 17 ENV/IT/000347



Ca

Ρ

Workshop online, 8 luglio 2021 LIFE SUBSED: Sustainable substrates for agriculture from dredged remediated marine sediments: from ports to pot

Dredged sediments are one of the biggest potential waste flows, according to regulations. Dredged sediments are mostly disposed of, at sea or on land. Sediments are part of our potential mineral resources (but also of our environment). ⇒ Sediments are eligible to circular economy thinking

The SedNet Working Group (WG)

Sediment as an agronomic substrate

Sediment as a resource

LIFE 17 ENV/IT/000347

Thank you for your attention!

Thanks to my working group Thanks to Flora Toscana Thanks to EC Life for supporting our research

Advances in the Sustainable Reuse of Sediments in Crop Production: Agronomic, Environmental, and Legal Issues

> Guest Editor Dr. Stefania Nin

Deadline 31 December 2021

Special Invitation to submit