

Seasonal School THE SOIL – WATER AND PLANT CONTINUUM FOR URBAN AND RURAL WASTEWATER PHYTOTREATMENT AND CONTAMINATED SITE REMEDIATION (SWAP)

WORKSHOP/WEBINAR

Phytoremediation of contaminated land and phytotreatement of polluted water: successfull case studies

30th June 2021 —- from 14.00 pm to 18.15 pm Aula Magna Storica — Scuola Superiore Sant'Anna, Pisa (Italy)

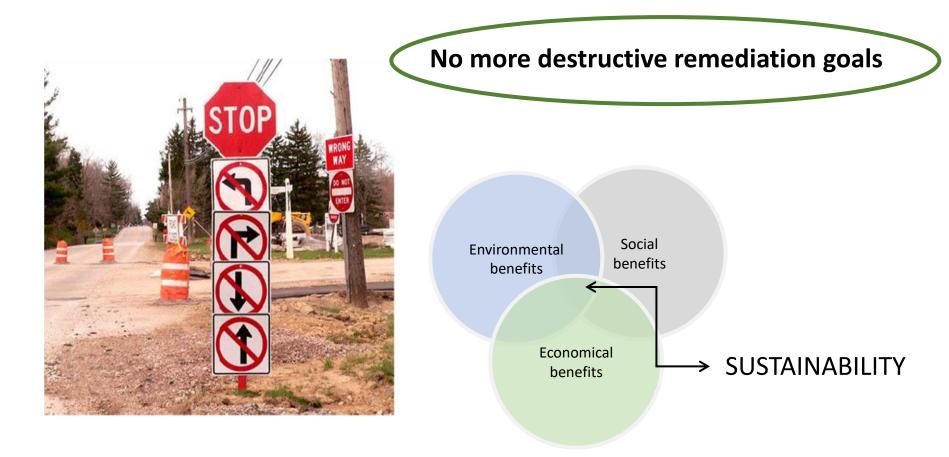
Phytotreatment techniques for dredging sediments: the LIFE AGRISED and LIFE **SUBSED** experiences Grazia Masciandaro – CNR-IRET

Dredging sediment management

Every year in Europe 100-200 million m³ of polluted sediments are dredged and need to be disposed of in specific and expensive ways.

On a national level, port sediments in surplus amount to about 50 million m³ with an average increase of about 5 million m³/year.

Italy is the second European country in the Mediterranean for the length of its coasts and it has 653 ports (Apat 2006)


The quality of the sediment is defined exclusively by the concentration values of the contaminants Consolidated technologies

- Landfill disposal
- Inertization

future perspectives

Contaminated sediment ≠ dangerous waste

The Green Deal sets ambitious targets of which the circular economy is a key element

Normative upgrade path from waste to resource

D. LGS.152/06 art.183

sediment = waste? ...any substance or object that falls within the categories listed in Annex A Part Four of this decree and of which the holder decides, has decided or is obliged to discard.

D.M. 173/2016

sediment = resource The new decree starts from the assumption that sediment is a resource to be recovered and used

...Many steps forward but critical issues remain

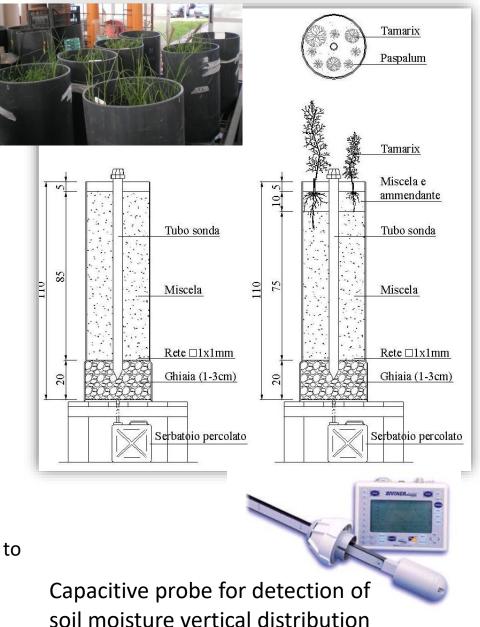
- Sink of contaminants
- Difficulty of treatment due to compact physical structure and low microbial activity
- Multiple factors impact on their quality and danger **Ecological aspects**
- In direct contact with other matrices: biota-water-air

- Lack of specific rules for sediments
- Lack of EU standardized sediment quality guidelines

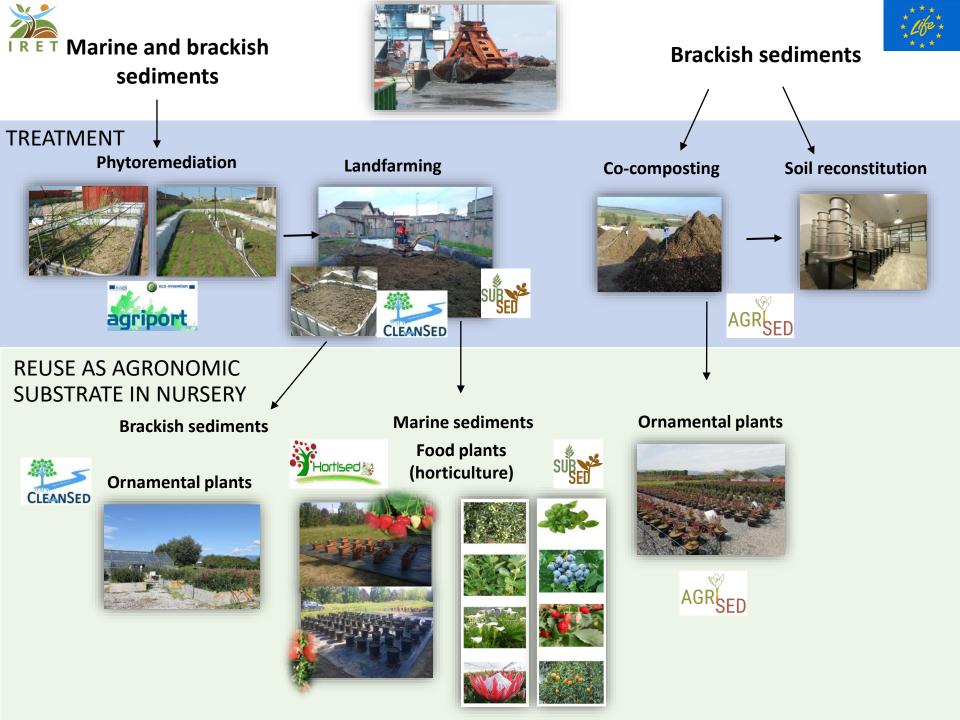
Different scientific approaches

- Empirical, theoretical and/or integrated Member States legislation
- Different ways of characterization
- Continuous regulatory updating

Preliminary experiments on mesocosms


association of a grass and a schrub

Addition of earthworms


Physical/chemical pre-conditioning:

a) Sediment : soil mixing (5:1 v/v) K₀ = 10⁻⁶ m/s → K = 10⁻³ m/s
b) Planned irrigation aimed at reducing salinity to levels tolelated by the selected plants.
c) Surface application of vegetal compost

Research aimed at **reclaiming slightly contaminated sites through phytoremediation** as an innovative technology to recover dredging sediments using plants. Two experimental sites:

- 1. Marine sediments from harbor (Livorno, Italy)
- Brackish sediments from navigable canal (Pisa, Italy)

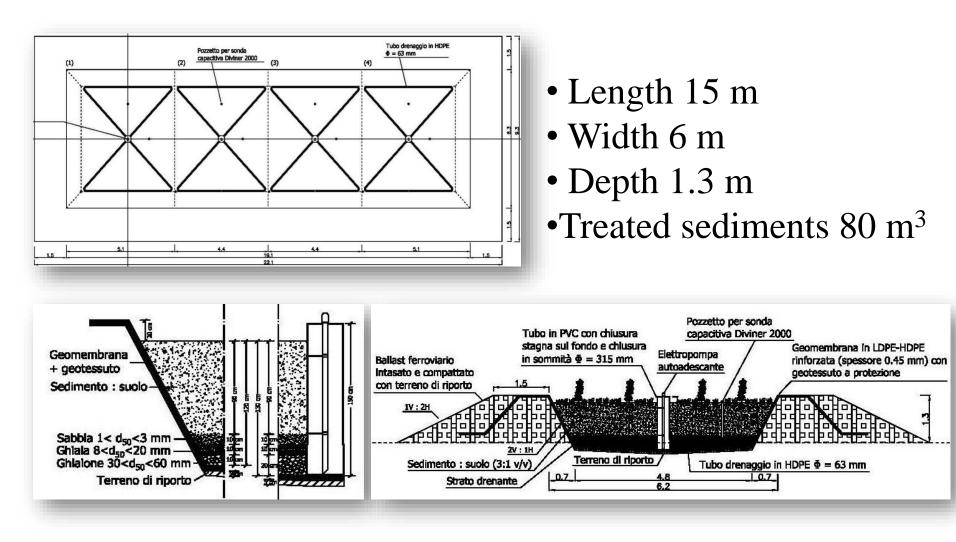
Specific Objectives

An integrated system, at <u>pilot</u> level, based on simultaneous **plant-microorganism** action is proposed for the recovery of dredged marine sediment from the following points of view:

1) Contaminant reduction (**DECONTAMINATION**)

2) Restoration of agronomical and biochemical fertility (FUNCTIONAL RECOVERY)

The Livorno harbour (Central Italy)

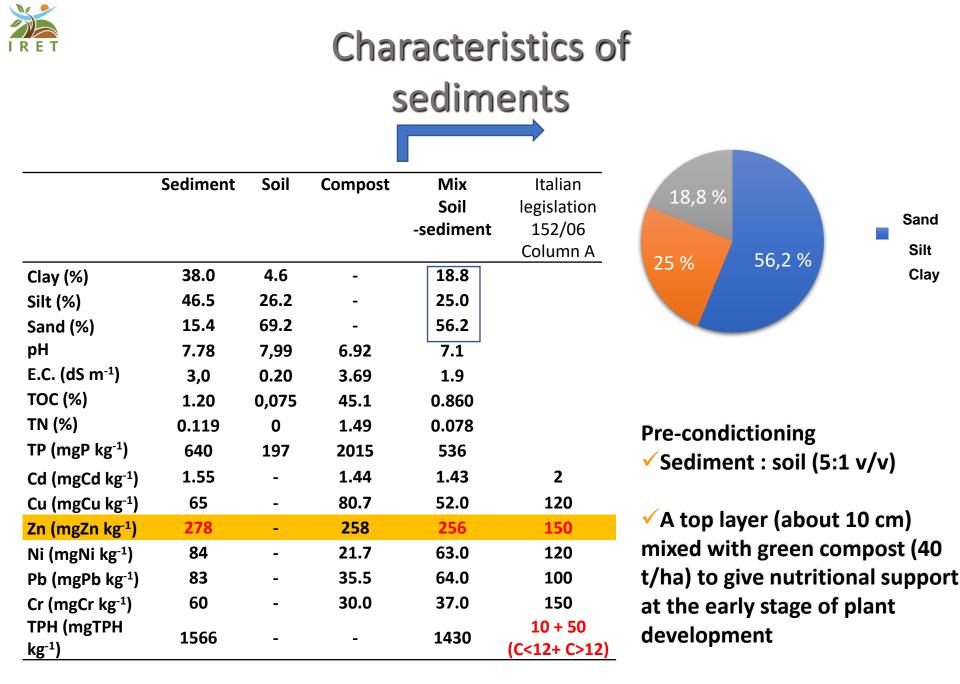


Samples of polluted marine sediments were dredged from the industrial canal

Design of the basin

Plants selection

- 1. High adaptability to water stress;
- Resistance to high salt concentrations;
- 3. Survival in the presence of pollutants.


Tamarix Gallica

Paspalum vaginatum

Spartium Junceum

Experimental setup

Organic matter (compost) addition

Planting - Paspalum vaginatum, Tamarix gallica, Spartium junceum

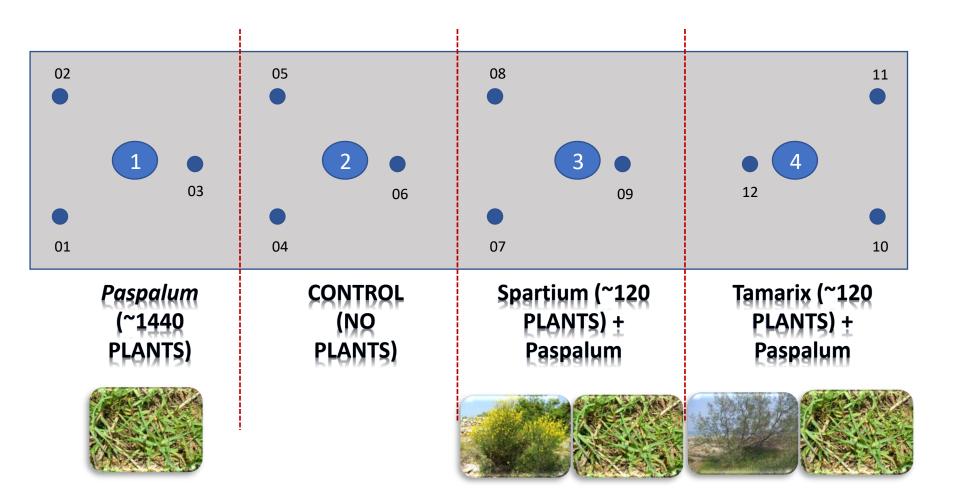
Organic matter role

• Physical:

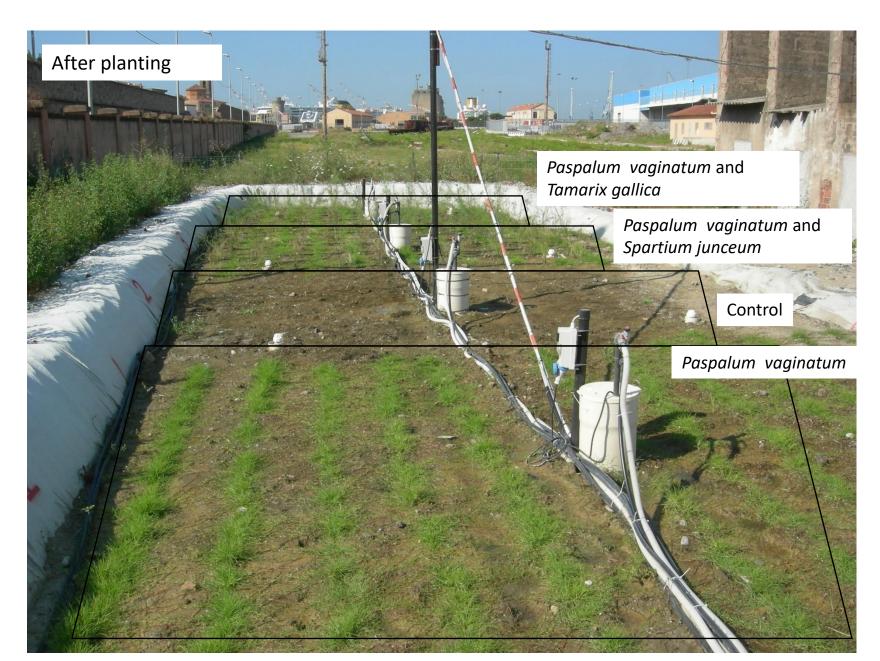
- Improves sediment structure
- Increases porosity and water-holding capacity

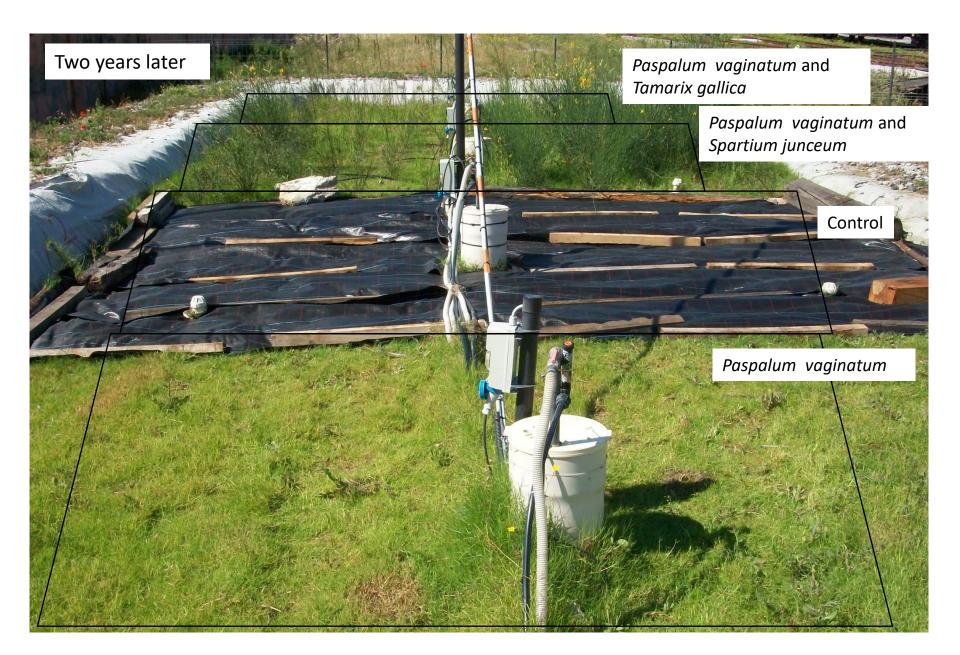
• Chemical:

- Modifies and stabilizes pH
- Increases cation exchange capacity
- Supplies nutrients


- Biological:
- Other:

- Increases microbial biodiversity and activity
- Suppresses plant diseases
- Binds/degrades contaminants
- Binds nutrients


All these characteristics enhance the sediment health and provide a medium satisfactory for plant growth.


Experimental setup



Paspalum vaginatum

Spartium Junceum

Spartium junceum (L.) has a root system predominantly taproot, consisting of few roots with a diameter between 10 and 20 mm and a depth between <u>50 and 80 cm</u>.

Tamarix Gallica

Root depth: 40 cm

Tamarix gallica usually has a root system consisting of roots with a depth between <u>60 and 100 cm</u>.

Plant growth

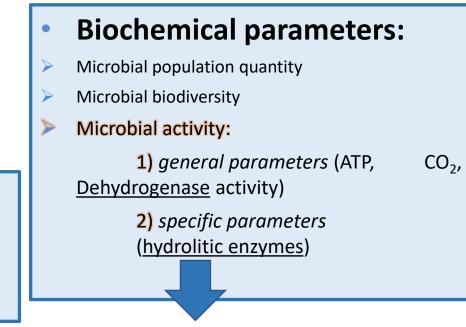
	P+S treatment	P+T treatment	P treatment		
	Spartium junceum	Tamarix gallica	Paspalum vaginatum		
	Heig cm	Coverage %			
June 2010 (T0) after planting	20	25	20		
December 2011 (T3) 1.5 year	143±33	130±24	100		
Growth from T0 to T3	715%	520%	500%		

P+S, Paspalum+Spartium; P+T, Paspalum+Tamarix; P, Paspalum

Monitoring

The monitoring of the pilot system consisted of samplings carried out twice a year. The results **after planting (T0)** and **after two years (T3)** from the experiment set up are reported.

Agronomical parameters:


- Total Organic Carbon
- Total Nitrogen (TN)
 - Total Phosphorus (TP) Nitrate

2) Decontamination:

Inorganic and organic contaminants:

- Heavy metals : Zn, Pb, Ni, Cu, Cr, Cd
- Total Petroleum Hydrocarbon (TPH)

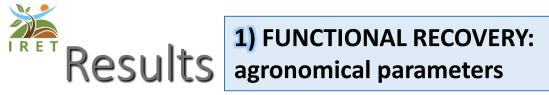
1) Functional recovery:

Enzyme role:

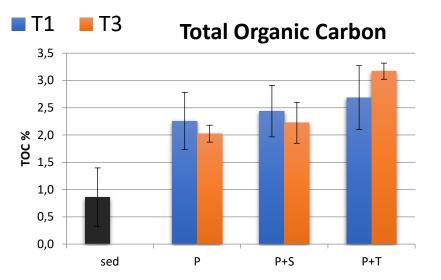
- Provide information about the nutrient cycles
- Expression of the level of microbial activity in soil
 24
- Ecological and functional response of sediment to recovery practices

Enzymes in soil and sediment

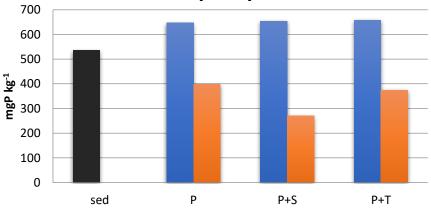
- 1) Intracellular enzymes: within microbial cells
- 2) <u>Extracellular</u> enzymes: a) free and b) stabilised with organo-minral compounds (humus-enzyme complexes)

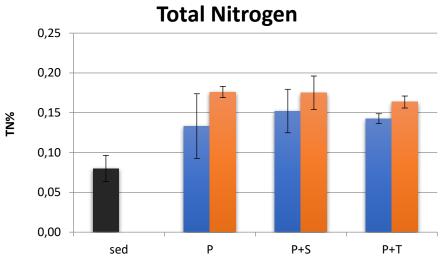

Intracellular enzymes being inside the microbial cells are very sensitive to any environmental change and are strictly **dependent** from microbial biomass number and activity

Extracellular enzymes reprensent the biochemical activity **not dependent** from microorganisms

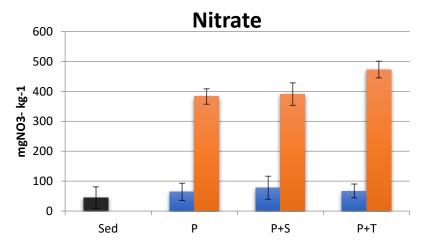

Extracellular enzymes adsorbed to, *complexed* with, or *entrapped* within clays and humus (*humo-enzyme complexes*), are relatively stable and can persist for extended periods.

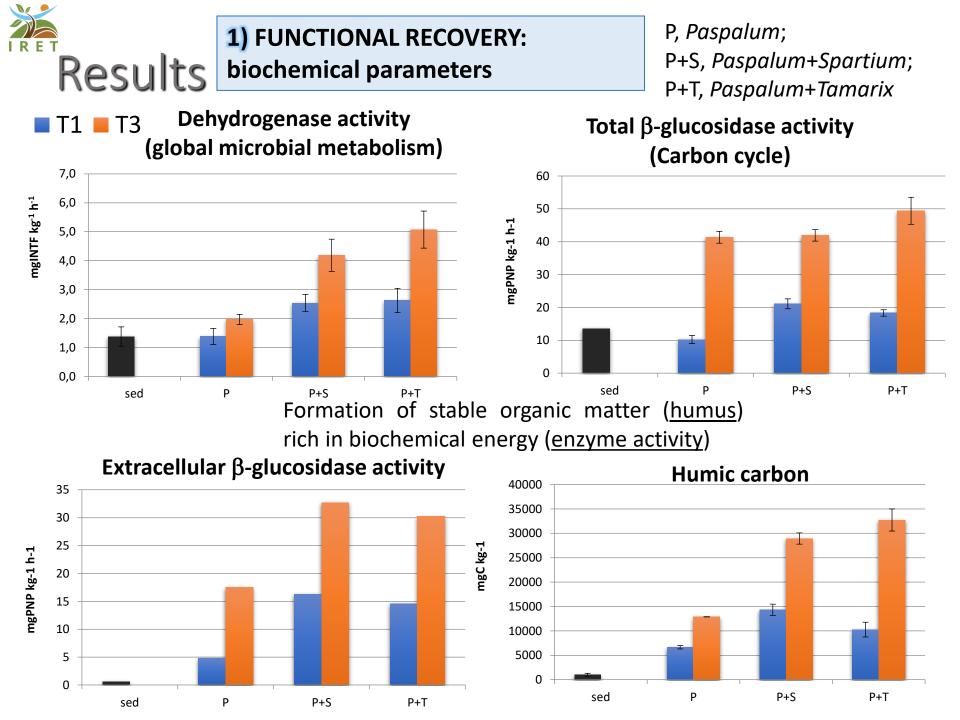
The activity of stabilised enzymes can be important under conditions unfavourable for the microbial activity


It is possible that an intial build up on an extracellular component is vital during the **early stages of microbial proliferation**, because such enzymes may catalize the commencement of degradation of the macromolecular substrates

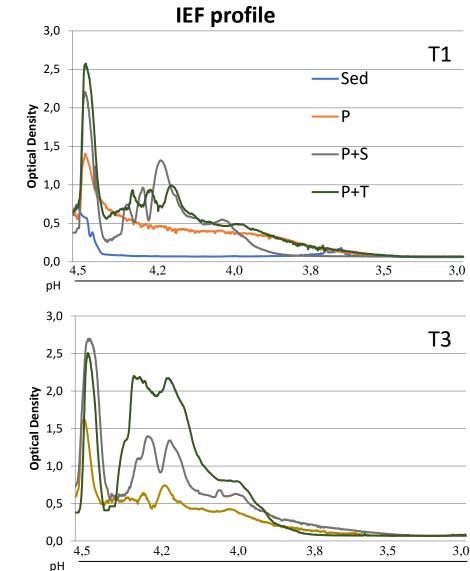


P, Paspalum; P+S, Paspalum+Spartium; P+T, Paspalum+Tamarix



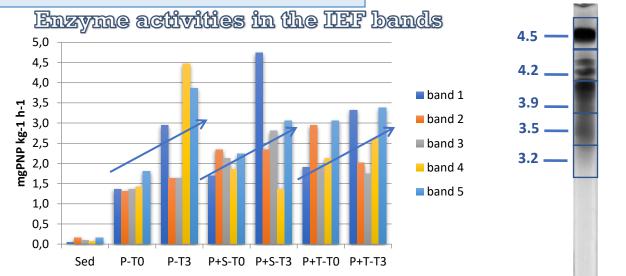

The maintenance of a vegetation cover exerts a positive influence on the input of C in sediment **Total phosphorus**

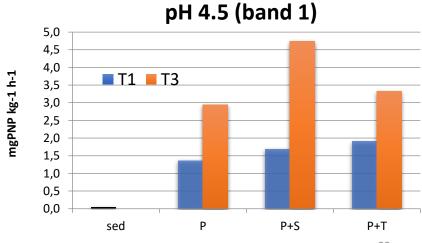
Improvement of the chemico-physical conditions for microorganisms and plants



1) FUNCTIONAL RECOVERY: biochemical parameters

Isoelectric focusing 2,5 **Enzyme purification Optical Density** 1,5 1,0 Т3 Т0 4,5 4,2 0,5 0,0 4,5 4,2 рΗ 4,0 3,0 2,5 3,8 **Optical Density** 1,5 1,0 3,5 0,5 3,00,0 pН P+S P+T Ρ 4,5 4,2 Sed Ρ P+S P+T

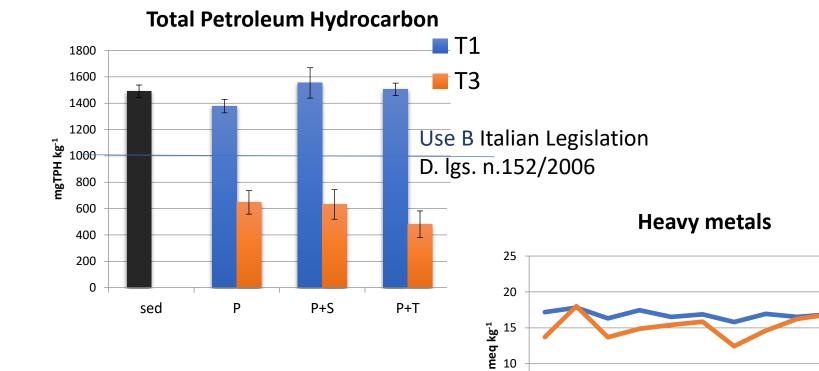

P, Paspalum; P+S, Paspalum+Spartium; P+T, Paspalum+Tamarix



Results 1) FUNCTIONAL RECOVERY: biochemical parameters

Enzyme purification

Corroboration of the strict linkage between extracellular enzyme and humic substance (stable humo-enzyme nucleus) Humic- β -glucosidase activity


P, Paspalum; P+S, Paspalum+Spartium; P+T, Paspalum+Tamarix

2) DECONTAMINATION:

- Heavy metals :Cd, Cu, Ni, Zn, Pb, Cr
- Total Petroleum Hydrocarbon (TPH)

P, Paspalum; P+S, Paspalum+Spartium; P+T, Paspalum+Tamarix

5

0

Ρ

С

0-20

P+S P+T

Ρ

С

20-40

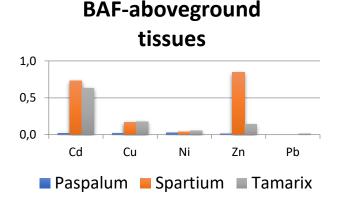
The decrease during the time of TPH indicated the effectiveness of the phytoremediation system (about 60%).

40-60

С

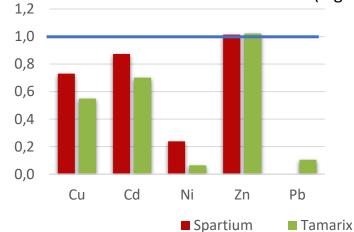
P+S P+T

P+S P+T


Ρ

Metals in plant tissues

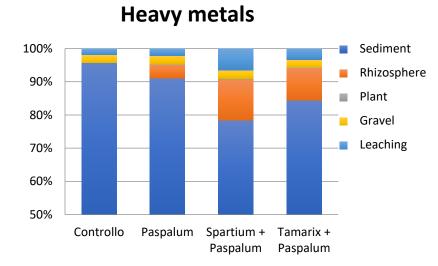
BAF=Cplant tissue/Csediment, where Cplant tissue and Csediment are metals concentration in the plant tissue (aboveground or root) (mg kg⁻¹) and sediment (mg kg⁻¹)

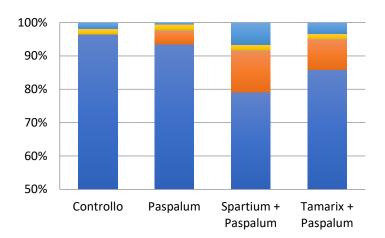

Bioaccumulation factor (BAF)

BAF-root tissues

BAF was generally higher in roots with respect to aboveground tissues in both *S. junceum* and *T. gallica*, the BAF of Cd was the higher in the two shrub plants, thus confirming its higher plant availability.

Translocation factor (TF)




TF=C_{shoot}/C_{root}, where C_{shoot} and C_{root} are metals in the shoot (mg kg⁻¹) and root of plant (mg kg⁻¹)

In agreement with BAF, metals accumulated by the selected plant species were largely retained in roots, TF values <1 Zn Cu, Cd were more translocated

Heavy metal mass balance

Zn

Concentrations of heavy metals in the leachate

	E.C.	рН	Cd	Cu	Ni	Zn	Pb	Cr		
	dS/m		mg/l	mg/l	mg/l	mg/l	mg/l	mg/l		
	After planting (T0)									
Р	10.5	7.96	0.014	0.027	0.032	0.070	<0,0060	0.033		
С	10.6	7.78	0.013	0.013	0.035	0.060	<0,0060	0.015		
P+S	9.67	7.96	0.013	0.017	0.039	0.063	<0,0060	0.013		
P+T	9.41	7.79	0.017	0.047	0.036	0.180	<0,0060	0.006		
		Two years later (T3)								
Р	0.90	7.05	0.0062	0.005	0.0086	0.05	0	0		
С	2.96	6.92	0.0051	0.0051	0.0117	0.0333	0	0		
P+S	0.72	7.22	0.0079	0.0045	0.0112	0.0618	0	0		
P+T	1.42	7.42	0.0077	0.0056	0.0056	0.037	0	0		
	Limiti allo scarico D.Lgsl 152/2006									
Scarico in acque superficiali		0.02	0.1	2.0	0.5	0.2	2.0			
Scarico sul suolo		-	0.1	0.2	0.5	0.1	1.0			

Comments

FUNCTIONAL RECOVERY:

➤The improvement of the chemico-nutritional properties of all treated sediments indicated the activation of nutrient cycles sustaining the agronomical fertility.

➤The increase of the biochemical parameters in particular in the grass+shrub treatments, has a key role in the establishment and maintaining of soil quality.

Finally, extracellular enzymes linked to humic matter (humus-enzyme complexes) represent an ecological advantage since they could represent the starter engine to activate the processes contributing to a natural soil formation

DECONTAMINATION:

> The decrease during the time of heavy metals (about 20%) and TPH (about 60%) indicated the effectiveness of the phytoremediation system.

Coordinator:

SGI Studio Galli Ingegneria (Padova, Italia)

Associated beneficiaries:

- Autorità Portuale di Livorno (Livorno, Italia)
- Università di Pisa Dip. di ingegneria civile (Pisa, Italia)
- CNR Istituto per lo studio degli ecosistemi (Pisa, Italia)
- Agricultural Research Org. Volcani Center (Israel)
- D'Appolonia s.p.a. (Genova, Italia)
- DFS Engineering d.o.o. Montenegro (Montenegro)

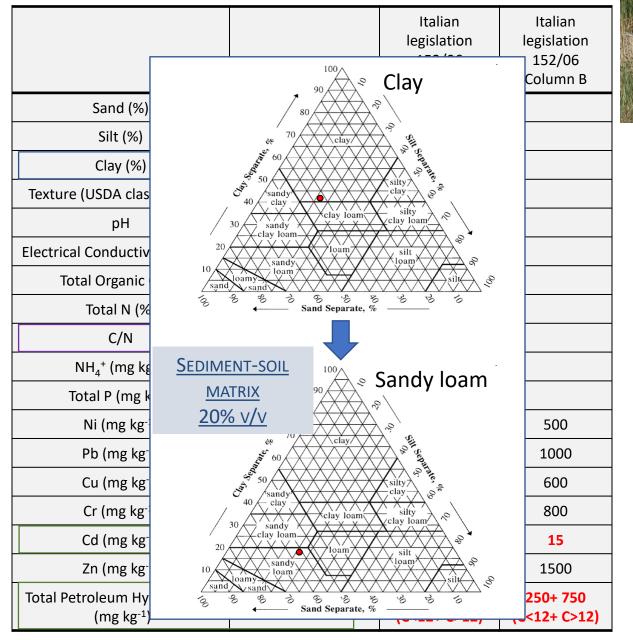
National patent: Iannelli R, Masciandaro G, Ceccanti B, Bianchi V, Doni S (2012). Metodo per il trattamento di residui di dragaggio mediante fitorimediazione e impianto che realizza tale metodo. PI2012A000013. Il Brevetto italiano è stato rilasciato il 05/09/2014 con No. 0001410263

100-200 million m³ of sediments are dredged yearly in Europe, about 65% contaminated and need to be disposed of in specific and expensive ways.

Brackish sediments

Navicelli Canal (Pisa-Italy) a navigable canal which connects Pisa to Livorno and flows into the sea

20 000 m³ dredged yearly



View of the Navicelli canal

Length: 16 km Width: 32 m Depth: 3 m

Slight contamination of heavy metals and a more significant contamination of pollutant organic compounds.

Experimental setup

CONTAINERS OF ABOUT 1 m³ FILLED WITH THE

CONTAMINATED SEDIMENTS DREDGED FROM NAVICELLI CANAL

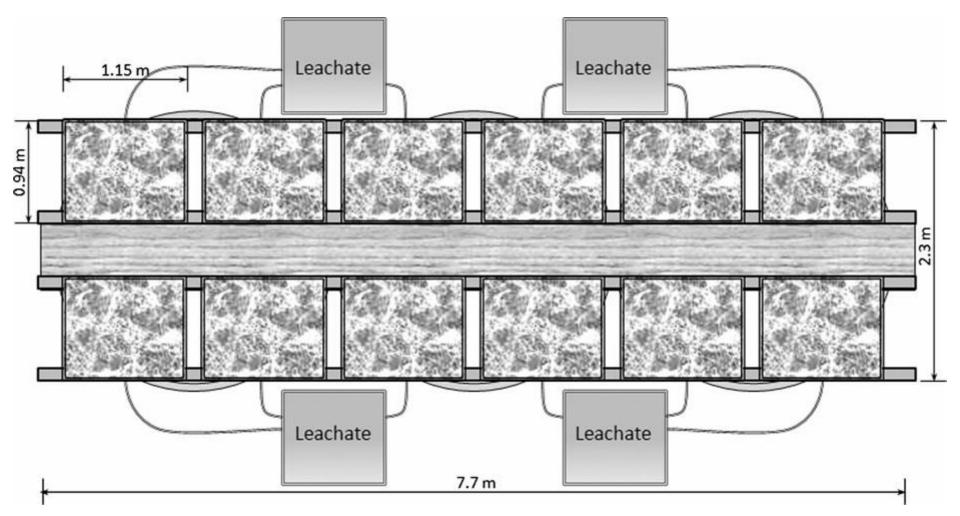
- a) **GRAVEL-SAND DRAINAGE**,
- b) PLASTIC NETWORK,
- C) MIXTURE SEDIMENT-SOIL

c)

CONTAINERS ARE EQUIPPED FOR **GRAVITATIONAL LEACHATE**

COLLECTION

A HIGH QUALITY COMPOST WAS MIXED WITH THE SEDIMENT-SOIL MATRIX AT SURFACE LEVEL (40T/ha)



PLANTATION

Experimental scheme

Plant selection

TREATMENTS:

- 1. Nerium oleander I. + Paspalum v.
- 2. Tamarix gallica + Paspalum v.
- 3. Spartium junceum + Paspalum v.
- 4. Phragmites australis
- 5. Paspalum v.
- 6. Control

High adaptability to water stress and survival in presence of pollutants

Phragmites australis

Paspalum vaginatum

Nerium oleander

Spartium junceum

Tamarix gallica

Monitoring

The monitoring of the pilot system consisted of samplings carried out every six moths. The results **after planting** (Ti) and **two years later** (Tf) from the experiment set up are reported.

Sediment analysis AGRONOMICAL RECOVERY

- > pH and Electrical Conductivity (E.C.)
- Total Organic Carbon (TOC)
- ≻ Total Nitrogen (TN)
- ≻ Total Phosphorus (TP)
- ➢ Nitrate

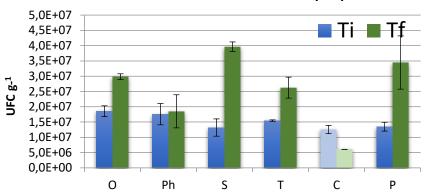
DECONTAMINATION

- Heavy metals : Zn, Pb, Ni, Cu, Cr, Cd
- > Total Petroleum Hydrocarbon (TPH)

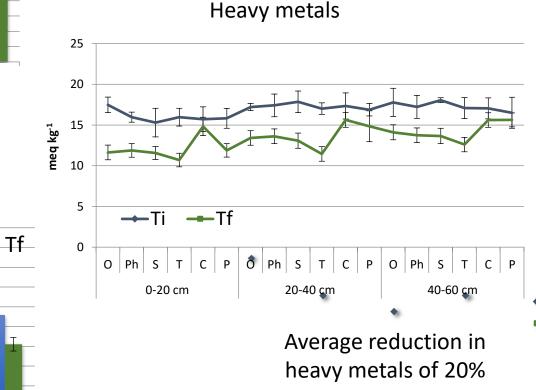
ECOLOGICAL-FUNCTIONAL RECOVERY

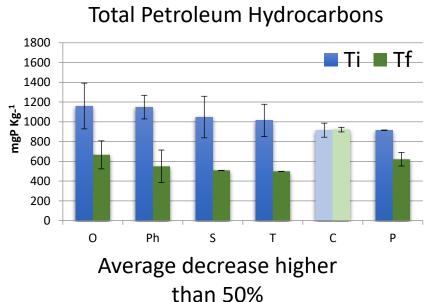
- > Total cultivable microbial population
- Dehydrogenase activity

Samples of the leachate were collected and analyzed in order to evaluate the need for further treatment before discharging


After two years

Nerium oleander (O) Phragmites australis (Ph) Spartium Junceum (S) Tamarix gallica (T)


Plant growth	0	Ph	S	Т			
	Height (cm)						
October 2010	25	20	20	25			
May 2012	104 ±2.1	110 ±9	134 ±30	145 ±10			
Growth (%)	410	551	670	581			



Total cultivable microbial population

Significant increase during the time (>50%) in total cultivable microbial population

DECONTAMINATION

➢After two years from the experiment set up all the plant species were well adapted and in a healthy condition (plant growth 400-700%)

➤An increase in the dehydrogenase activity, which is an enzyme related to the soil microbial functionality, was obtained at 20-40 and 40-60 cm in the shrub-grass treatments. This suggested an improvement of the chemical-physical conditions for microorganisms and plants

The microbial metabolism stimulation in the plant treatments determined the higher efficiency of Ph, S and T plant species in TPH (>50%) removal with respect to the other treatments

➤A general decrease in heavy metal (20%) content were obtained in the planted sediments with respect to the control sediments

➢ Very low concentrations of contaminants were measured in the leachate, if comparing the data with the Italian Legal limits (D.lgs. 152/2006)

Paspalum reached 100% of plant cover in all the treatments

🕌 Landfarming of phytoremediated brackish

sediments to:

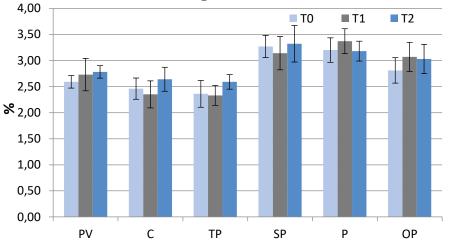
- Homogenize the substrate
- Increase the biological activities
- Further reduce the organic contamination

Matrix suitable for nursery activity

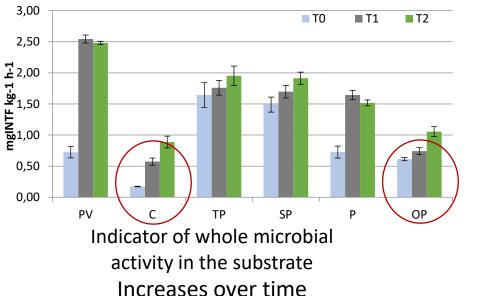
-Removal of plants

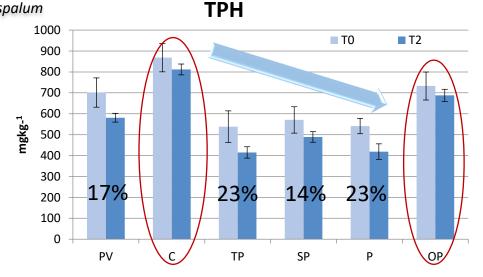
-Periodically turning over of the sediments inside each containers (12)

-3 months of landfarming -Collection of the sediment: 1.5 months (T1) and 3 months (T2)



- PV= Paspalum C=Control
- TP= Tamarix+Paspalum
- SP= Spartium+Paspalum
- P= Phragmites


T0= landfarming StartT1= 1.5 months landfarmingT2= 3 months landfarming


OP= Oleander +Paspalum

Dehydrogenase

Further significant decrease in the organic contaminants

Lower enzyme activities in the control and in the Oleander treatment

Lower contaminant reduction

Treated sediment reuse Purposes

Agronomical

 Reforestation
 Agronomic substrate in nursery companies
 Improvement of fertility of abandoned soils
 Functional recovery of degraded soils

 Filling (quarries)
 Beach nourishment
 Land improvement and road fund filling
 Restoration of marginal areas

Treated brackish sediment (Phytoremediation and Landfarming)

Agronomic substrate in nursery companies

Soil/sediment mixtures

	CTL	Т33	Т50
% phytoremediated sediment	0%	33%	50%

Selected ornamental plants

Plant growth

planting

No difference in the three substrates for Photinia and Eleagnus growth

8 months later

Greater growth in T33 and T50 for Viburnium

T50

Agronomic substrate in nursery companies

Landfarming (3 months)

periodical (once per week) aeration by mechanically moving the sediments and turning them over

Treated marine sediment (phytoremediation and landfarming)

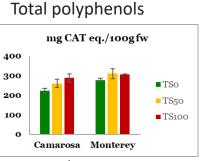
Parameters	Sediment at the end of landfarming	D. lgs. 75/2010
Bulk density (g/cm³)	1,08 ±0,07	0,95
рН	8,10 ±0,01	4,5-8,5
Electrical conductivity(dS/m)	0,33 ±0,04	<1
TOC %	$1,57 \pm 0,02$	>4
TN %	0,13±0,01	<2,5
TP (g/Kg)	0,58±0,03	
P ₂ O ₅ %	0,11±0,02	<1,5
Cd (mg/kg)	0.96 ±0,06	1,5
Cu (mg/kg)	$34,3 \pm 4,3$	230
Hg (mg/kg)	$0,075 \pm 0,001$	1,5
Ni(mg/kg)	34,6 ± 5,33	100
Pb(mg/kg)	$35,2 \pm 3,7$	140
Zn (mg/kg)	248 ± 11	500

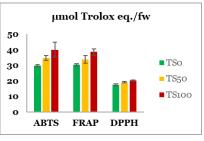
homogenization of the substrate
 increase in biological activities (double)
 further reduction in organic contamination (C>12 25%)

reduction in toxicity (BioTox 50% lower)

To obtain a matrix suitable for reuse in horticulture (food plants) in compliance with Italian regulation for agronomic substrate (D.lgs: 75/2010), mixing of sediment with a source of organic matter rich in Carbon and light, such as peat, is necessary

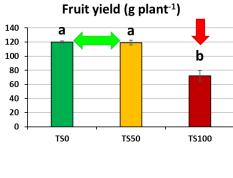
Peat/sediment mixtures


	TS0	TS50	TS100
% phytoremediated sediment	0%	50%	100%

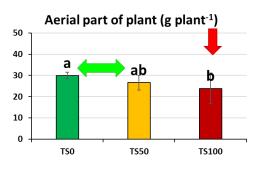

STRAWBERRY PLANTS

STRAWDERRTTEANTS		
	<u>Camarosa,Montere,</u> <u>Sant'Andrea</u>	Plant analysisPlant Biomass
POMEGRANATE TREES		Plant Production
LETTUCE HEADS	<u>Purple Queen,</u> <u>Mollar</u>	 Nutraceutical qualities Food safety: Organic and inorganic contaminants
	<u>Ballerina</u>	Strawberry growth
		Fruit yield (g plant ⁻¹)

Strawberry nutraceutical properties



Antioxidant capacity



mg CYA eq./100g fw 50 40 30 20 10 0 Camarosa Monterey mg CYA eq./100g fw • TSo • TSo • TSoo • TSioo

Total anthocyanins

Agronomic and functional properties of all substrates, also TS100, were suitable for plant growth

ortised 👯

Yield, number of fruits and average weight of fruits in TS50 and TS0 similar, while the worst production in TS100

In TS 50 and TS100 nutraceutical properties comparable or greater than the control (TS0)

2018-2022 Sustainable substrates for agriculture from dredged remediated marine sediments: from ports to pots (LIFE SUBSED LIFE17 ENV/IT/000347)

Landfarming (3 months)

periodical (once per week) aeration by mechanically moving the sediments and turning them over

Phytoremediated marine sediment

The objective of the LIFE SUBSED project was to demonstrate that it is possible to convert a waste (dredging marine sediment) into a resouce (commercial substrate) through the application of environmentally and economically sustainable techniques. In order to achieve the purpose, sediment-based substrates were applied to nursery production.

Selected plants

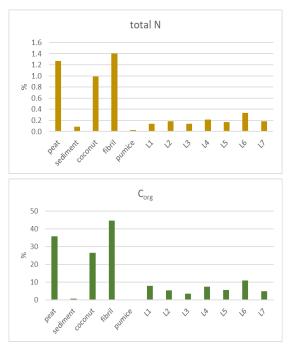
- **Fruit trees** (olive and citrus)
- Ornamental plants (protea, calla, laurel)
- Food plants (basil, blueberry, wild strawberry and citrus).

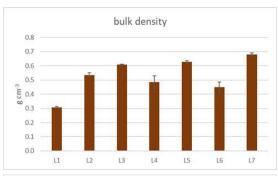
Increase in microbial acivities Complete reduction of C>12 Increase in germination index (GI% 140)

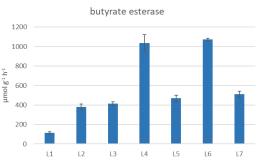
Agronomic substrate monitoring

L1 L2 L3 L4 L5 L6 L7

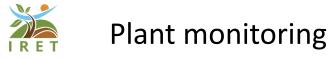
SUB	
SED	* <i>Life</i> * * *

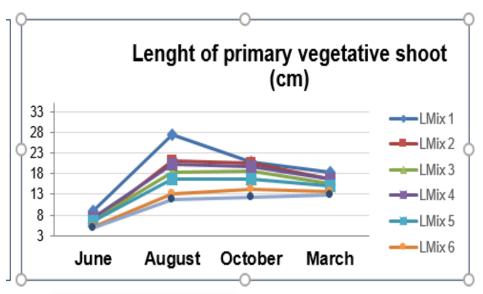

Parameter	Sediments at the end of landfarming in the Subsed Project	D. lgs. 75/2010
Bulk density (g/cm³)	$1,19 \pm 0,05$	<0,95
pH	7,4±0,2	4,5-8,5
Electrical conductivity (dS/m)	$0,13\pm 0,01$	<1
TOC %	1,38 ±0,08	>4
TN %	$0,12 \pm 0,01$	<2,5
P ₂ O ₅ %	$0,17\pm 0,01$	<1,5
Cd (mg/kg)	< LOD	1,5
Cu (mg/kg)	48,6 ±1,7	230
Hg (mg/kg)	0,070 ±0,001	1,5
Ni(mg/kg)	37,7 ±0,7	100
Pb(mg/kg)	37,2 ±6,4	100
Zn (mg/kg)	145 ±4	500


To obtain a matrix suitable for reusing in horticulture in compliance with Italian regulation for agronomic substrate (D.lgs: 75/2010), mixing of sediment with a source of organic matter rich in Carbon and light, such as peat, is necessary


Traditional subtrates/sediment mixtures

LAUREL/OLIVE/STRAWBERRY/BLUEBERRY


	60% peat	40% pumice
25%sediment	45% peat	30% pumice
50%sediment	30% peat	20% pumice
25%sediment	45% coconut	30% pumice
50%sediment	30% coconut	20% pumice
25%sediment	45% wood	30% pumice
50%sediment	30% wood	20% pumice


The substrates will be analyzed at the end of the vegetative cycle of each plant

Prunus laurocerasus (rooted cuttings) Lauro

 Higher chroma index in the substrate containing wood fiber (L6-L7)

25%sediment 45% wood 309

L6

30% pumice

Plant monitoring

- BSD = Stem base diameter;
- MPH = Maximum height of the plant;
- NVS = Number of vegetative shoots;
- LVS = Length of the vegetative shoots;
- NEL = Number of fully expanded leaves on vegetative shoots

After one year:

- ✓ no significant differences between 25% and 50% sediment-based substrate (L2-L3) and traditional substrate (L1)
- ✓ Lower plant healt in the substrate containing wood fiber (<u>L6-L7</u>) with respect to the other substrates

2018-2022 Use of dredged sediments for creating innovative growing media and technosols for plant nursery and rehabilitation - European project LIFE AGRISED LIFE17 ENV/IT/269

Brackish sediments

Navicelli channel (Pisa, ITALY)

Agricultural canal (Kunice, CZECH REPUBLIC)

-high sand content (greater porosity, air and drainage)
-low content of heavy metals
-low salinity

Green waste

Grass, corn cob, wood chips, wood, leaves

provide carbon and nutrients that stimulate microbial activity and improve the physical structure

Sediment co-composting

Objective 1: to demonstrate the suitability of dredging cocomposted sediments with green wastes as **agronomic substrate in nursery**

Viburnum tinus

Objective 2: to demonstrate the suitability of dredged sediments used as such to produce innovative technosols (reconstituted soils) for reclamation of degraded land and brownfields

Reconstituted soil

Photinia x fraseri

Co-composting process monitoring

- temperature,
- humidity,
- bulk density
- organic matter
- humic substances
- pollutant contents
- microbial communities
- enzyme activities

Compared with their own reference legislation: -CZ: compost in compliance with the legislation for all parameters -IT: Again lower TOC and higher Electrical Conductivity in composts which contain 75% and 50% of sediment

Compost maturity

Decrease in organic matter content, electrical

conductivity, microbial activity, organic contaminants and increase in humification rate and germination index

	Parate -									
	1	Agrised			Agrised		Italian legi	slation on		European
	Com	post/subs	trate	Com	post/subs	strate	fertil	izers	Czech Republic	Legislation
	Cze	ech Repul	olic		Italy		D. Lgs. 7	75/2010	legislation	on fertilizers
					•		Ū		Sediment reuse in	1009/2019
									agriculture Decree	
									No. 257/2009	
									,	
	75%	50%	25%	75%	50%	25%	Green	Mixed		Growth
	sed	sed	sed	sed	sed	sed	Compost	substrate		substrate
Bulk density(g/cm ³)	1,00	0,81	0,75	0,88	0,69	0,58		<0,95		
рН	8,12	8,12	8,18	7.4	7.5	7.3	6-8,5	4,5-8,5		
E.C.(dS/m)	0,86	0,78	0,75	2,7	2,4	1,2		1		
TOC %	3,02	3,04	5,04	1,66	3,54	9,39	>20	>4	All metal li	mits are
Volatile solids(%)	6,5	7,8	13,3	4,1	8,2	18,4				
TN %	0,26	0,31	0,48	0,15	0,31	0,58		<2,5	respected	
C/N	11,6	9,8	10,5	11,1	11,4	16,2	<50		L	
P ₂ O ₅ %	0,002	0,003	0,005	0,001	0,001	0,005		<1,5		
Humic substances	2,09	2,62	3,3	1,37	2,24	6,28	> 2,5			
Salmonella	no	no	no		e determ		no		no	no
E.Coli (CFU/g)	<100	<100	<100		e determ		<1000			<1000
Germination Index(%)	124	117	108	85	86	80	>60		>30	
E.Coli (CFU/g)	<100	<100	<100		e determ	nined	<1000			<1000
Cd (mg/kg)	0,2	0,02	0,2	0,38	0,30	0,23	<1,5	<1,5	<1	<1,5
Cu (mg/kg)	34	27	32	33	29	21	<230	<230	<100	<200
Hg (mg/kg)	<0,1	<0,1	<0,1	0,05	0,04	0,05	<1,5	<1,5	<0,8	<1,5
Ni (mg/kg)	16	12	13	32	30	28	<100	<100	<80	<50
Pb (mg/kg)	12	9,4	11	23	22	20	<140	<140	<100	<120
Zn (mg/kg)	70	60	60	96	105	99	<500	<500	<300	<500
Cr (mg/kg)	19	15	15	30	36	29		<100	<200	
As(mg/kg)	2,9	2,9	3,9						<30	
Be (mg/kg)	0,5	0,4	0,6						<5	
Co (mg/kg)	4,3	4,1	5,4						<30	
V (mg/kg)	20	19	24						<180	
IPA(mg/kg)	0,45	0,41	0,40						<6	
PCB (mg/kg)	<0,01	<0,01	<0,01						<0,2	
C10-C40 (mg/kg)	85,5	64,8	62,9						<300	

Agronomic substrate in nursery companies

Substrates	Composition
1	50% peat, 50% pumice+ 4kg/m ³ Basacote
2	Compost (75% Green Waste, 25% Sediment) + 4kg/m ³ Basacote
3	Compost (50% Green Waste, 50% Sediment) + 4kg/m ³ Basacote
4	Compost (25% Green Waste, 75% Sedimen t) + 4kg/m ³ Basacote
5	40% Compost (75% Green Waste, 25% Sediment), 40% peat, 20% pumice + 4kg/m³ Basacote
6	40% Compost (50% Green Waste, 50% Sediment), 40% peat, 20% pumice + 4kg/m³ Basacote
7	40% Compost (25% Green Waste, 75% Sediment), 40% peat, 20% pumice + 4kg/m³ Basacote

Photinia x fraseri

Viburnum tinus

Agronomic substrate in nursery companies

Photinia x fraseri

After 5 months from plantation

						Note to match		
Substrate		Н	FW	DW			S/R	DW/FW
	Т0	T5		shoots	roots	Total		
50% peat, 50% pumice (control)	59	61	396	79.6	35.4	115.0	2.2	0.29
100% Compost (25% Sediment)	57	57	280	63.8	26.8	90.6	2.4	0.32
100% Compost (50% Sediment)	57	70	364	85.2	36.0	121.2	2.4	0.33
100% Compost (75% Sedimen t)	58	62	381	83.5	47.7	131.2	1.8	0.34
40% Compost (25% Sediment), 40% peat, 20% pumice	59	61	339	76.2	29.5	105.7	2.6	0.31
40% Compost (50% Sediment), 40% peat, 20% pumice	60	60	318	74.4	26.4	100.8	2.8	0.32
40% Compost (75% Sediment), 40% peat, 20% pumice	57	62	367	82.7	33.4	116.1	2.5	0.32

H: height; FW: fresh weight; DW: dry weight; S/R: shoots/roots

- Limited plant growth due to the rather cold winter season;
- The plant growth parameters did not show significant differences between the different substrates

The substrates will be analyzed after one year from plantation, that is at the end of 2021

Soil Reconstitution to improve the pedological properties of degraded soils

- 1. mixing of soils with wastes from different sources: biological sludge, **dredging sediments**, paper mill sludge;
- 2. crumbling and fragmentation of the aggregates, together with the possible addition of humic compounds, and further mixing;
- 3. mechanical decomposition and destructuring combined with the defibration and dispersion of the organic components within the entire mass;
- 4. mechanical pressure made by a rotating system allows the incorporation of organic substances to the mineral fraction, generating the neo aggregates of the **reconstituted soil**

DEGRADED SOIL DREDGED SEDIMENT DEGRADES SOIL / DREDGED SEDIMENT / MATRICES CO-COMPOST 1:1 CO-COMPOST 1:1 / DEGRADED SOIL CO-COMPOST 1:1 / DEGRADED SOIL / MATRICES CO-COMPOST 1:3 / DEGRADED SOIL CO-COMPOST 1:3 / DEGRADED SOIL / MATRICES CO-COMPOST 3:1 CO-COMPOST 3:1 / DEGRADED SOIL / MATRICES

ECOSISTEMI

Life CLEANSED, HORTISED, SUBSED and AGRISED projects implemented the concept of <u>circular</u> <u>economy</u> through actions that guarantee the recycling of dredging sediments in environmental and agricultural production sectors, contributing significantly to the sustainable management of wastes

-In particular, the LIFE CLEANSED project has demonstrated, for the first time, the possibility of recycling dredging sediments, appropriately treated (<u>phytoremediation and landfarming</u>), in **nursery sector (ornamental plants)** as an alternative to traditional growth substrates

-The LIFE HORTISED project has demonstrated, for the first time, the possibility of recycling dredging sediments, appropriately treated (phytoremediation and landfarming), in **horticulture (food plants)**, as an alternative to peat

-The LIFE SUBSED project has demonstrated the possibility of recycling dredging sediments, appropriately treated, in both **horticulture and nursery sectors**

-The LIFE AGRISED project has demonstrated the possibility of <u>co-composting sediments</u> with green waste for the production of a growth substrate for **nursery sector** and for **soil reconstitution**. Experimental tests are currently ongoing and will confirm the suitability of the substrates in these two environmental sectors.

- 1. Macci C, Peruzzi E, Doni S, Vannucchi F, Masciandaro G (2021).Landfarming as a sustainable management strategy for fresh and phytoremediated sediment. Environmetal Science and Pollution Research doi: 10.1007/s11356-021-13134-y
- 2. Peruzzi, E., Macci, C., Doni, S., Zelari, L., Masciandaro, G. (2021). Posidonia oceanica based-compost and dredged sediments as a growth substrate for ornamental plants Acta Horticulturae, 1305, pp. 317–324
- 3. Tozzi F, Del Bubba M, Petrucci WA, Pecchioli S, Macci C, Hernandez Garcia F, Martinez-Nicolas JJ, Giordani E (2020) Use of a remediated dredged marine sediment as a substrate for food crop cultivation: <u>Sediment</u> characterization and assessment of fruit safety and quality using strawberry (Fragaria x ananassa Duch.) as model species of contamination transfer. Chemosphere 238 124651 https://doi.org/10.1016/j.chemosphere.2019.124651
- 4. Peruzzi, E., Macci, C., Doni, S., Zelari, L., 2019 Masciandaro, G Co-composting as a Management Strategy for Posidonia oceanica Residues and Dredged Sediments. Waste and Biomass Valorization doi/10.1007/s12649-019-00822-7.
- 5. Tozzi F, Pecchioli S, Renella G, Melgarejo P, Leguac P, Macci C, Doni S, Masciandaro G, Giordani E, Lenzi A (2019) Remediated marine sediment as growing medium for lettuce production: assessment of agronomic performance and food safety in a pilot experiment Running title: reusing dredged sediments as growing media. J Sci Food Agric. 5624–5630 https://doi.org/10.1002/jsfa.9815.
- 6. Mattei P, Gnesini A, Gonnelli C, Marraccini C, Masciandaro G, Macci C, Doni S, Iannelli R, Lucchetti S, Nicese FP, Renella G (2018) Phytoremediated marine sediments as suitable peat-free growing media for production of red robin photinia (Photinia x fraseri) Chemosphere 201, 595-602.DOI: 10.1016/j.chemosphere.2018.02.172
- 7. Ugolini F, Mariotti B, Maltoni A, Tani A, Salbitano F, Izquierdo CG, Macci C, Masciandaro G, Tognetti R (2018). A tree from waste: Decontaminated dredged sediments for growing forest tree seedlings. Journal of environmental management, 211, 269-277. 10.1016/j.jenvman.2018.01.059.
- 8. Doni S, Macci C, Martinelli C, Iannelli R, Brignoli P, Lampis S, Andreolli M, Vallini G, Masciandaro G (2018). Combination of sediment washing and bioactivators as a potential strategy for dredged marine sediment recovery. Ecological Engineering, 125, 26-37. DOI: 10.1016/j.ecoleng.2018.10.009.
- 9. Ugolini F, Calzolari C, Lanini GM, Massetti L, Pollaki S, Raschi A, Sabatini F, Tagliaferri G, Ungaro F, Massa D, Antonetti M, Garcia Izquierdo C, Macci C, Masciandaro G (2017) Testing decontaminated sediments as a substrate for ornamentals in field nursery plantations Journal of Environmental Management 197, 681-693. DOI 10.1016/j.jenvman.2017.03.064.
- 10. Mattei P, D'Acqui LP, Nicese FP, Lazzerini G, Masciandaro G, Macci C, Doni, S, Sarteschi F, Giagnoni L, Renella G (2017) Use of phytoremediated sediments dredged in maritime port as plant nursery growing media. Journal of Environmental Management 186, 225-232. DOI: 10.1016/j.jenvman.2016.05.069
- 11. Ugolini, F., Calzolari, C., Lanini, G.M., Massetti, L., Sabatini, F., Ungaro, F., Damiano, S., Izquierdo, C.G., Macci, C., Masciandaro, G. (2017). Physiological performance and growth of Viburnum tinus L. on phytoremediated sediments for plant nursing purpose. IForest 10, 55-63. DOI 10.3832/ifor1840-009.
- 12. Doni S., Macci C., Peruzzi E., Iannelli R., Masciandaro G. (2015). Heavy metal distribution in a sediment phytoremediation system at pilot scale. Ecological Engineering 81: 146–157. DOI: 10.1016/j.ecoleng.2015.04.049.
- 13. Moreno B, Canizares R, Macci C, Doni S, Masciandaro G, Benitez E (2015). Molecular tools to understand the bioremediation effect of plants and earthworms on contaminated marine sediments. Journal of Hazardous Materials 300: 398–405. DOI: 10.1016/j.jhazmat.2015.07.019
- 14. Capra GF,Grilli E, Macci C, Vacca S, Masciandaro G, Ceccanti B, Bondi G, Duras MG, Dessena MA, Marras G, Gaviano C, Buondonno A (2014). Lake-dredged material (LDM) in pedotechnique for the restoration of Mediterranean soils affected by erosion/entisolization processes. J Soils Sediments 15:32–46. DOI 10.1007/s11368-014-0950-0.
- 15. Masciandaro G., Di Biase A., Macci C., Peruzzi E., Iannelli R., Doni S. (2014). Phytoremediation of dredged marine sediment: Monitoring of chemical and biochemical processes contributing to sediment reclamation. Journal of Environmental Management 134, 166-174. DOI: 10.1016/j.jenvman.2013.12.028. (I.F. 3.13)
- 16. Doni S., Macci C., Peruzzi E., Iannelli R., Ceccanti B., Masciandaro G. (2013) Decontamination and functional reclamation of dredged brackish sediments. Biodegradation 24, 499-512. DOI: 10.1007/s10532-012-9606-1