LIFE SUBSED LANDFARMING TO VALORIZE PHYTOREMEDIATED MARINE SEDIMENTS FOR THEIR REUSE IN NURSERY **LIFE17 ENV/IT/000347** INTRODUCTION

The management of dredging sediments represents a great problem. In Europe every year up to 100-200 million m³ of contaminated sediments are dredged and need to be treated in order to be reused. Phytoremediation and landfarming represent two biological methods for the remediation of polluted sediments. The aim of SUBSED project is to demonstrate the suitability of landfarming process on marine phytoremediated dredged sediments to create a new substrate able to replace the conventional one

Marine sediments (port of Livorno) were partially decontaminated in Agriport project

MATERIAL AND METHODS

• Plant used: *Paspalum* vaginatum, Tamarix gallica, Spartium junceum • Compost 4kg m²

- ✓ Decrease in **heavy metals (20%)** and total petroleum hydrocarbons (50-60%) concentration
- Improvement in chemicalnutritional properties (25%) increase in N and P)
- Stimulation of the biological activity (50% increase in number and activity of microorganisms)

- 3 months
- periodically (once a week) mixing and aeration through a little excavator

In **Subsed** project the landfarming was applied to phytoremediated sediments

Landfarming is a technique for the remediation of contaminated matrices that exploits the biological action of microorganisms through their biodegradative processes towards pollutants

sediment will be tested as agronomic

LANDFARMING RESULTS

- ✓ The bulk density and the conductivity significantly decreased at the end of landfarming process
- ✓ As expected, no variations for heavy metals were detected
- ✓ Hydrocarbon C>12 decrease noticeably (<100 mg/kg)

WR2

CaliPlant

35.3 a

In compliance with Italian regulation for agronomic substrate (D.lgs. 75/2010) with the exception of **TOC** (lower) and **bulk density** (higher)

7.604.2 c

The mixing of sediments with a source of organic matter rich in carbon and light, such as **peat**, coconut fiber, wood fiber, allowed to reach the required limits

• fruit trees (olive and

ornamental plants

food plants (basil,

blueberry, wild

(protea, calla, laurel),

citrus)

Ornamental species Prunus laurocerasus

Water Regimes WR1 = normalWR2 = low(-30%)

NURSERY RESULTS

	Stem DW (g)	Leaves DW (g)	Roots DW (g)	Total DW (g)	Total leaf area(cm ²)
Substrates					
LMix 1	42.6 a	116.7 ab	134.8 bc	294.1 bc	9.764.2 a
LMix 2	42.8 a	126.0 a	197.7 a	366.4 a	8.632.6 ab
LMix 3	31.6 b	89.3 c	126.7 bcd	247.6 cd	7.282.6 bc
LMix 4	42.3 a	119.4 a	155.5 ab	317.2 ab	8.442.8 ab
LMix 5	31.6 b	93.0 bc	93.3 cd	218.0 de	6.621.3 c
LMix 6	18.4 c	55.4 d	91.7 cd	165.5 e	4.885.4 d
LMix 7	18.2 c	56.6 d	82.5 d	157.3 e	4.357.3 d
Water Regi	Water Regimes				
WR1	29.6 b	ns	ns	ns	6.677.6 b

ns

ns

October 2020

	Substrates	Chroma
		Index
	LMix 1	14.1ab
	LMix 2	13.4 a
	LMix 3	14.1ab
	LMix 4	14.7bc
	LMix 5	14.3bc
2020	LMix 6	16.5d
Chroma	LMix 7	14.9c
Index		
13.6a		
14.8a		
16.8b		2000
17.1b		
18.1b		
31.7d		
28.8c	These states	
	Index 13.6a 14.8a 16.8b 17.1b 18.1b 31.7d	LMix 1 LMix 2 LMix 3 LMix 3 LMix 4 LMix 5 2020 LMix 6 Chroma LMix 7 Index 13.6a 14.8a 16.8b 17.1b 18.1b 31.7d

Tested Substrates							
LMix1		60% peat	40% pumice				
LMix2	25%sediment	45% peat	30% pumice				
LMix3	50%sediment	30% peat	20% pumice				
LMix4	25%sediment	45% coconut fiber	30% pumice				
LMix5	50%sediment	30% coconut fiber	20% pumice				
LMix6	25%sediment	45% wood fiber	30% pumice				
LMix7	50%sediment	30% wood fiber	20% pumice				

Plant grew better in LMIX 2 than LMIX 1 (control)

ns

Limited growth in presence of wood fiber

www.lifesubsed.com

Conclusion The landfarming process was effective in homogenizing the treated sediments and reducing organic contamination, reaching suitable physical and chemical characteristics for its use for agricultural sector in association with other substrates. NIVERSITAS

carbonsink